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ON THE ESTABLISHMENT OF DENSITY PROFILE FOR THE FLOW 
OF A TWO-FLUID SINGLE PHASE GAS MIXTURE 

by Timothy W. Kao 

Abstract. The establishment of density profile for a two-fluid single phase gas mixture 

under a body force from a uniformly mixed upstream condition is analysed. The flow is 

assumed to be two-dimensional and confined between two parallel walls. An inviscid 

h ydrodynami ca I mode I is adopted. A perturbation procedure is used to obtain a closed 

from zeroth order solution. The interplay between Fickian and baro-diffusion is brought 

out. The problem bears on cavity type gaceous nuclear reactor propulsion device where 

the critical concentration of the nuclear fuel in a fuel-propellant mixture is important. 
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(1) Introduction 

For many industrial purposes it is desirable to know the establishment of stratificatification 

for a two-fluid single phase fluid system in the presence of strong body forces. In particular, it is 

very often necessary to know the concentration of the heavier species at various points downstream 

of the ,inlet where the two fluids are uniformly mixed. This knowledge is needed, for example, in 

gaseous nuclear propulsion device where the heavier fluid is uranium, and the critical concentration 

for the onset of reaction is of paramount importance. In most problems of this nature the body force 

is usally a centrifugal force, and for high flow velocities the effect of viscosity is generally negligible. 

The dominant effect is one of mass diffusion. 

In this paper an inviscid, incompressible, hydrodynamical theory is proposed. Strictly 

speaking the thermodynamics of the system has to be considered together with the mechanical 

equations in order to obtain a complete set of equations (see for example Landau and Lifshitz (1)). 

However, when the change of density of the fluid mixture taken as a whole is assumed to be 

proportional to the change in concentration of the heavier fluid, a purely mechanical consideration 

suffices and thermodynamics can be left out of the analysis. This of course results in a major 

simplification of the problem. A perturbation scheme is then used to solve the problem, which is here 

considered as a two-dimensional flow in a horizontal duct with a body force in the vertical direction. 

2. The Governina Eauations 

The equation of continuity for the total mass of fluid is 

(1) 

(1) L. D. Landau and E. M. Lifshitz, Fluid Mechanics.Addisonj-Wesley Publishing Go., Inc. 
Reading, Mass. pp 219-227. 



where p is the total density of the fluid and 2 denotes the velocity. 

We note that velocity is here understood as the total momentum per unit mass of fluid, 

and the equations of motion are the Euler’s equations 

where 
t 

is the pressure, 
4 

$ 
is the body force and 

is the substantial derivative. 

(2) 

#.. z ( +k +zv) 

If we denote c to be the mass concentration of the heavier fluid, the equation ‘of 

continity for that species is 

DC bt =-v.;z 

-W 

where i is the mass flux of that species. 

The mass flux is made up of three parts 

I L = -DCVc + ( > P T VT 

where D is the diffusion coefficient or mass transfer coefficient 

%T is the thermal diffusion ratio 

5 
is the barodiffusion ratio 

and T is the absolute temperature. 

(3) 

(4) 



-CT + and are determined by thermodynamic properties alone. For the purpose of this analysis 

it can be shown (see Landau and Lifshitz (1))that 
-ct 

is negative. 

In the present analysis we shall assume a uniform temperature distribution so that 

where k z - k is positive. From the above equation we can conclude at once that equilibrium 
P 

is reached when the flux due to mass concentration is balanced by the pressure flux. 

Substitution of (5) into (3) yields 

(l), (2), and (6) are five equations for the six unknowns, c, 
P IPI ;u’ 

system we assume 

( p-p*‘> = p cc - c9, 

(6) 

To complete the 

where P and C.* are reference quantities and 0 is a constant of propationality. 

We shall now formulate our problem in terms of a duct flow. The flow is assumed 

to be steady two-dimensional and bounded by two parallel walls at y = 0 and y = L as shown 

in Figure I. The body force $ is taken to be in the negative #- direction. If we denote 

b I v ) to be the components of v’ in the (x, y ) - directions, then for an incompressible 

flow the equation of continuity is 

au. 
ar 

+3x so . 

“;) 

(8) 
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The equations of motion are 

= -%, 

and (6) becomes 

where v=i&+;$ and 

Hence 

02) 

(13) 

The boundary conditions ore 

3. Solution of the Boundary Value Problem and Discussion 

The boundary value problem is now to be solved by a perturbation procedure, In 

general g may be assumed to be a function of x. Now D and k are known functions 

of P and p. We let D  = f; w  PL 



We now assume a perturbation series of the form 

u = U,l$ + 44, + fur + 1 . - 

v-= 0 + v-l 4 G* 4 . . . 

t = +bq> t.-p 3 fa +.a- 

e = pq) + p, -t y z  t  8 l # 

where terms of 1st and higher orders are << than the zeroth order quantities. It then follows that 

fl = J&p ++y, ++, + ij $4 +p;%ppJi + ‘a ’ 
Substitution ot the above into the equatioNand collecting zeroth order terms we have 

Utilization of the 1st two we then have 

Zcoax # 

(14) 

(17) 

The system consisting of the above equation together with (14) and (15) is the non-linear zeroth 

order equations. Bearing in mind that $, and 5, are really diffusion coefficients we could 

assume(as leading terms in an ordinary iterative procedure) $, and 4, to be constants and 

denote 4, by -k, , and 5, by k2. Hence we have 

5 



or 

The boundary conditions are now 

(18) 

The velocity u. is determined by the inlet velocity distribution. For any given U, at the 

inlet and g equation (18) together with the above boundary can be readily solved 4 finite 

differences. For the important case when UO is constant =A and g is constant an analytical 

solution is presented. 

We first cast the equations into non-dimensional form by using L as the reference 

length, A the reference velocity and 
c 

as the reference density, we have using the 

same symbols to denote now the corresponding dimensionless quantities, the following: 

where 

if we denote -&2 and (t3 x F-*) by y 
I 

we have 



(19) 

By separation of variables, the solution to the above problem is 

where are eigen-functions of the Sturm- 

Liouville system from separation of variables and are orthogonal with respect to the weight function 

2% in the interval (0,l). Q, are the Fourier coefficients given by 

= vl.Jr jf [(-I)“” eb/’ + \ -J / c (g,’ + m f , 
and 

a = li /(I - e9 . 

Note that eqn. (19) with its associated boundary conditions automatically ensures that 

J ‘jw/~l+f = 1 as it should be. This last result has been utilized to obtain a. 
0 

From the solution it is immediately clear that as x -+ 00, p6 3 (Ye8d)/(\-e”>. 
It is also seen that the important parameter of the problem is the dimensionless number y. 

For y ----I 0, fi is constant throughout as to be expected. If y is very large then 

the heavier gas sinks to the bottom. For some physicaily realistic value there would of course 

be a balance between baro-diffusion and mass diffusion and the asymptotic form of /a 

above indicates the equilibrium distribution. It has an exponential behavior as one would expect. 

The approach to the equilibrium position is also exponential. It is seen that the series converges rather 

rapidly for all ~>a . 
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Figures (2) and (3) are two typical cases (for fixed o< , and zf ) of density profiles as a function 

of depth for various values of distance from the inlet, The exponential profile is reached 

asymptotically for larpx,Fig (4) shows for fixed & and ‘d the depth along the channel 

where an increase in density can be expected. For given values of oc and y, the above figures 

thus yields the intormation needed for determining the critical concentration for example. 

Figures (5) shows the depth of where density increase can be expected for various values of. y . 

It shows that as y increases, the depth of the region of increasing density decreases. 

Figures (6) shows the distance downstream from the inlet OS a function of y for the density profile 

to reach 80 per cent of its asymptotic value. The graphs are plotted for constant values of d . 

It exhibits a maximum of y approximately e8mL to 5. The curves goes to zero as y = 0. 

Figure (7) is a typical plot of the density as o function of depth with natural scales. 



Appendix 
Solution of the boundary value problem 

By separtion of variables we assume 

Equation (19) and boundary condition become 

From (Al) we have, on using the condition at X = d, 

x = A $-zaF-d-d)+ 

and from (A2),we have 

W  

(A3) 

where LO= 
J 

Substitution of (A3) into the boundary conditions following (A2) we obtain the secul& equation 
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or 

u=nfl, uL= 0, I, 2,3,. - l 

that is 
$n’ 4AZ-f = 

I 

4 > or L = my+ TF . 

A particular solution, not an ekgen solution, also comes from 

‘1( 2 
a2=- 7 l ) 

4x’--f T2 
or - L--, 

4 4 > uv A--O 

For A=O, ? = earq , and g=a, a constant 

For 4: , hence X satisfies the 

condition at X = 4 . Indeed X + 0, OS z4oa. The corresponding e.lgen 

functions are then 

We note that the eigen functions ‘7, (1’ are orthogonel with respect to the weight function 

9”;s in the interval (0,l) and form a complete basis for expansion of L2 - functions. 

Thus we write 

At & =o, p.cx+j> =l, at x. -06, pdoq) -, a &‘6”6 

and from the conservation of mass we have 

10 



At r = 0, then 

The series converges by virture of the Sturm-Liouvi Ile Theorem. 

11 



Y’ 
/ / / / ////////////////////////////// 

E L 

b L w ///‘-//////////////////////////////// 
X 

Figure 1. - Definition sketch. 
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Figure 2. - Variation of density with depth for different distances down- 
stream from the inlet Case for y = 5, a = 2. 
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Figure 3. - Variation of density with depth for different distances down- 
stream from the inlet. Case for y = 15, a = 0.5. 



24 jr 

22 

20 

18 

I6 

14 

P 12 ‘C 

IO I- 

0 

6 

4 

2 

Y=O 

1 
INCREASING Y 

REGION WHERE DENSITY INCREASES 

‘1 
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0 I.1 1.2 1.3 I.4 I.5 1.6 1.7 1.8 

Figure 4. - Typical variation of density with distance downstream from inlet for various depths. 
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Figure 5. - Variation with y of depth of zone where density increases. 
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Figure 6. - Distances downstream, where 80 percent of equilibrium profile for X = 00 is established, as a 
function of y. 
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Figure 7. - Natural scale of typical plot of variation of density with depth. 

18 NASA-LandeY, 1965 


